
M IX/360
USER’S GUIDE

BY

D. E. KNUTH

R. L SITES

STAN-CS-71-197
March, 1971

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UN IVERS ITY

USER'S GUIDE

bY

D. E. Knuth

R. L. Sites

Introduction .

Decksetup.......................

MIX/360 control cards

ASM, GO, BTN, TRAC, NDMP, END

Batched input .

Summary of the way MIX/360 looks at your deck

Special characteristics of this MIX configuration . . .

Character set .

How to read the listings

Assembler error messages

Example output

Simulator error messages

Some common pitfalls and how to avoid them

Implementation notes

1

1

1

2

3

3

3
4

5
6

9
10

ll

‘?I

.

MIX/360 is an assembler and simulator for the hypothetical MIX machine, which is described for example

in Knuth's The Art of Computer Programming, Section 1.3.1. The system contains several debugging aids to

help program construction and verification.

The one-pass assembler accepts programs written in the MIXAL language as described in The Art of Computer

Programming, Section 1.3.2. The END card terminating a MIXAL program may be followed by several control cards

including a GO or BTN card which invokes the simulator. The simulator optionally prints out a trace of the

program and/or a post-mortem dump of the MIX memory with counts of how often each instruction was executed.

.There is a limited capability for batching multiple assembly/simulations during one invocation of the

system.

Deck Setup - General Case

//jjjjjjjj JOB (aaaakkk,bbb,0.2,1),'nnnnnnnn*

/* SERVICECLASS~

/I EXEC MIX

//SYSIN DD *

,[A%'4 ssslll]

(MIXAL Program)

s c TRAC address

[NDMP

.f
ir 1

‘i

GO n (or BTN n)

[data 1

I*

where jjjjjjjj is your job name, aaaa is your account number, kkk is your keyword, bbb is your bin

number, and nnnnnn is your name. The symbol $ denotes zero or more occurrences, and [...I denotes an

optional item. Control cards (ASM, TFUC, NDMP, GO, and BTN) are explained below; these codes and MIXAL

operation codes start in column 12 and the associated "address" fields start in column 17. To batch several

programs in one job, follow the last data or GO card by an ASM card and another MIXAL program, etc.

Simple Setup

job card

/* SERVICE CL&X=Q

/I MEC MIX

//SYSIN DD *

Cm PrwW

GO 2

[data]

/*

MIX/369 Control Cards

1. ASMa: The following cards (up to the next END card) must be a XIXAL program. This deck will be

assembled and the program will be loaded into an initially zero MIX memory. Afterwards MIX's registers are

set to zero and it is ready to begin execution at the address specified on the END card. (Execution will

begin when the next GO or BTN card is encountered.) An ASM card is automatically inserted at the beginning

of the input if one is not already present. The address cx is normally blank; however, the address on the

first ASM card may be a six-digit number ssslll , specifying unusually large time and/or line limits. In

that case, the program is given sss seconds to run, and 100 times ill lines may be printed before the

1

whistle is blown. The default limits are 5 seconds and 500 lines (equivalent to ASM 005005) . The limits

specified on the JOB card should be greater than or equal to the ASM card limits, if you want clean termina-

tion. The job card shown above under "Deck Setup" has limits of 0.2 minutes (I2 seconds) and 1 thousand

lines.

2. Goa. Here Cy is a W-value, usually a constant, denoting a nonnegative integer n less than 4000

(Cx blank denotes n = 0) . A GO card starts the simulated MIX computer. It starts either at the first

instruction after a previous HLT instruction, or, if this is the first Go after an ASM, at the address

specified on the END card. Each instruction is traced the first n times its location is encountered;

tracing is explained under How to read the listings. It is suggested that GO 2 be used until your program

appears to be working. A program continues to run until (a) a HLT instruction is encountered, or

(b) too many execution errors occur, or (c) the actual running time or amount of printing exceeds the

set Units. (See error messages below.) In case (a), another GO card may be used to continue the program.

The GO card should be followed by all the data cards which will be read by the simulated MIX program up

until the time its execution stops.

3. BTN a. This is like a GO a, but the simulation starts as if MIX's "Go-button" had been pushed. (See

Exercise ~3.1-26 in The Art of Computer Programming.) The card following BTN is read into locations O-15

in MIX code; rJ is set to zero; and execution begins witkthe instruction at location zero.

4. TRAC a. Here a! is a W-value which specifies a location to be traced. During program execution all

Store or Move operations which change this location are traced, and any instruction executed frcxn this

location is traced. (Note that an IN instruction which affects this location will not cause tracing.)

5. NDMP. The post-mortem dump will be suppressed after the next GO or BTN.

6. _ END a. An END card encountered during an assembly terminates the assembly. a is a W-value which

specifies the location of the first instruction to be executed when a GO is encountered. IfanEND card is

encountered- as a control card (not during assembly) the job is terminated; in this case, a is ignored.

An infinite number of END cards is automatically inserted at the end of a deck immediately preceding the /*

card (there is no "end-of-file" indicator), so a terminating END is generally not needed.

Batched Input

Several sets of

ASM

(MIX deck)

may be run in a single job. The time and line limits-for the whole batch is set by the first ASM card (and

the job card). There are no safeguards to prevent a MIX program fran reading in the next one as data. Nor

are there any provisions for preventing an infinite loop in one program from terminating the whole batch

before later programs are run.

2

Summary of the way MIX/360 looks at your deck.

b

Set Time/Line Limits
[ASM ssslll]

I

clASSEMBLE

TRAC
NDMI?

BTN cx

ASM

LINES EXCEEDED

HLT

I TIME EXCEEDED I

1

Special characteristics of this MIX configuration

1. At present only unit 16 (the card reader) and unit 18 (the printer) are simulated.

2. The byte size is 100; all displayed information is in decimal notation.

3. Floating-point operations are not simulated.

4. The alphabetic character code is extended as follows:

Code Character

10
20
21
56

Y-" ygzF-ii:)as a b1ank)
.

Ti (double quote)
$ (percent)
& (ampersand)
(hash mark)
& (cents signs , prints as blank)
t. (exclamation point, prints as blank)
I (not sign)
? (question mark)

z

How to read the listings

Suppose the (MIX deck) is:

* E%WPLEMlXDM;rK
READER EQU 18
PRINTER EQU 16

ORIG 1000
START IN BuFm(READER)

JIBUS *(READER)
IDA RKFFER
LDl =23=

lH STA RUFFER,l
DECll
JlP IB
STZ RUFFER+2(1:2)
OUT BlJm?ER(mINTm)

I HIT* *
BUFFER ORIG *24

END START
Go 2

THIS IS ADATACARD
I*

The output (three pages) is shown in Figures 1, 2 and 3. Notice the following points of interest

corresponding to the numbers in the illustration:

1.

2.

3.

This column shows assembled instructions or equivalents, broken into appropriate fields.
.,

This column shows the current "location counter", except on EQU lines when it is blank. sd

The input is reproduced here. The vertical bars over columns 0, 10, and 16 help verify that the

right card columns were punched.

4.

5.

6.

The time and line limits are printed here (in this case 5 seconds and 500 lines).

A "/" just to the left of an assembled instruction denotes a "future reference" that will be fixed up

later when the value of the symbolbecames known. The first occurrence of a symbol is assembled as -1

the second as the address of the first, the third as the address of the second, etc.

Here the "1008" means that the last "future reference" to EKIFFER was in location 1008. (The loading

8.

routine will follow the links 1008, 1007, 1004, 1002, 1000, -1, changing all the addresses in these

locations to the true address, 1010, of RUFFER.)

An error indication! It is illegal to use RUF'F'ER+2" when EKIYFFER is a future reference, so the "+2"

was ignored. (The programmer should either have defined RUFFRR near the beginning of the program, or

should use another symbol such as RUFFRR2 which is later EQU*d to EKJFFER+2.)

The total number of errors detected (1 in this case) appears here. (An attempt will be made to run

the program, regardless of the number of errors found.)

The literal constant =23= is inserted just before the END card, in this way (note that the second =

does not appear '

10. This 1000 denotes the starting address computed by the END card (corresponding to START in this case).

XL. The equivalent of a control card address (in this case 2) appears here. If the card "TRAC ID" had

12.

13.

14.

15.
16.

appeared, the corresponding address would have been 1004.

The location of the instruction being traced.

The number of times this location has been encountered so far.

The instruction being traced.

Its operation code translated into symbolic form.

Either the address after indexing, or the contents of the word at that address

been performed).

(before the operation has

17.

18.

190

Contents of MIX's registers, before executing this instruction. (When error messages amear, the register

contents after execution may be shown instead.)

If the overflow toggle is on, an X appears here.

The comparison indicator (L = less, E = equal, G = greater) .

4

20. The simulated time in MM units.

21. When an instruction is encountered for the third and subsequent times, tracing is suppressed (because

we said "GO 2") and a single line of dots appears. Also, in a series of consecutive NOPs only the

first one is traced. All-zero words in memory are NOPs.

22. This line was output by the MIX program, not the tracing routine.

23. The final register contents upon program termination.

24. The total run time, including any time needed to terminate the last I/O operation.

25. The final contents of MIX's memory may be helpf'ul for "post mortem" examination.

26. Here you can see the number of times each instruction was executed. For example, the instruction in

location 1OOlwas performed 7168 times!

Assembler Error Messages

One letter error codes are printed on the left side of the assembly listing. Up to four codes will be

printed for a single line.

,*CODE MEANING ixAMm

A Address has wrong syntax DA (129
B Backward local symbol has not been defined J-MI? 3B

C Character is invalid JMP $

D Duplicate definition of location field symbol; X ENTA 3

the current definition is ignored. X ENI'A 4

E End card has non-blank location field. The LOC END START

F

L

M

0

R

T

U

v

X

9

symbol is ignored.

Field specification is improper.

Length of symbol, constant or literal exceeds

10 characters (including first = sign in a

literal).

Missing operand.

Operation code is unknown. Treated as NOP.

Range of location counter is wrong

(< 0 or > 4000) , or attempt to assemble

a word into location 4000.

Too big a field or index specification

Undefined symbol (future reference) used other

than standing alone as an address.

Overflow occurred during the evaluation of an

expression.

Extra operand

The loading routine ran into trouble trying to

fix up previous references to this location,

either because of previous errors or an attempt

to load two instructions into the same location.

If this error occurs, the address fields of other

instruction(s) may be incorrect also.

= sign missing at the end of a literal.

What do you mean? A control card was expected

(ASM, END, TRAC, NDMP, GO, BTN).

Not an error message, see note 5 above.

LDA xYZ(3:2)

CON 12345678gol

IDA 5+0:2)
J7NZ LABEL

ORIG 4001

MOVE XYZ(327)

LDA XYZ(J)

where J is not defined

ENTA 512345678g+ 5123456789

LDA 2(1:1)3

the “3” is extra

2IP
0f >

x

...

.

....

..
l

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.
r .
(1
c-
cc

7
C

c
Id

.

...

.

.

c... 0u3
a* .

...

6

7

-c&O0
3OCG
OGCC
GCGC,
occc

++++

Simulator error messages

F-FIELD IS WRONG.

The instruction has too large an F field.

I/O OPERATION INCOMPLETE.

You are trying to store into a memory area where input or output is in progress; or trying to fetch

from a memory area where input is still in progress.

INCORRECT I/O UNIT.

The input/output unit you requested is not present on this version of MIX; or it is not valid for

this operation (e.g. output on the card reader).

INDEX REGISTER OVERFLOW

This instruction made the index register contents more than two bytes.

INDEXING ERROR.

The I field of this instruction is greater than 6, or the result of indexing doesn't fit into two bytes.

INVALID MEMORY ADDRESS.

The,memory address is out of range (either negative or greater than 3999). .

INVALID OPERATION.

The operation code is greater than 63; or, a negative shift has been requested.

INVALID PARTIAL FIELD.

The field specification does not have the form 8L+R where 0 _< L _< R _< 5 .

OPERATIONNOT IMPLEMENTED.

The present version of MIX does not include this operation (e.g. a floating point operation).

INSTRUCTION LCC IS OUT OF RANGE.

The next instruction location is negative, greater than 3999, or within an area where input is in

progress.

TOO MANY HANGUPS, FUSE IS BLOWN.

Simulation stops because of excessive errors.

Other messages

TIME ISRUNNING OUT.

The 360 operating system is about to throw your program off the machine, due to lack of time, so it is

necessary to terminate. (In order to increase the time allotment you must change your JOB card and use

a special ASM card at the beginning.of your deck, as described above; but first make sure your program

isn't in an infinite loop.)

TOO MANY LINES PRINTED.

The 360 operating system is about to throw your program off the machine, due to excessive output, so it

is necessary to terminate. (If you want to increase your line allotment , you must change your JOB card

and use a special ASM card at the beginning of your deck, as described above; but first make sure you

are actually going to find all that output useful.)

9

‘IE

Sane common pitfalls and how to avoid them

1.

4

b)

4
d)

4
f >

’ 2.
4
b)

4

4

4

3.

4

b)

4

Reading between the lines of the assembly listing:

Undefined symbols are legal and are assigned one word each at the end of the program. Look immediately

in front of the END card for these every time you assemble. These can occur from a large variety of

bugs, such as using 2H instead of 2F or 2B.

Columns 10 and 16 are completely ignored, so address fields starting in column 16 are not flagged; the

part in columns 17 on is blindly used. Likewise labels starting in column two are silently ignored.

Cures -- scan your eye down the listing from the vertical bars in the heading; look for undefined

symbols in (la).

Don't assume that the error count (1 on the sample listing) is zero. Look at it.

Make sure that you have the right address on the END card. If you leave it off, the simulator will

execute your program starting at location zero.

Look for "?" on the left side of your listing. It indicates a bad control card.

If you get a "9" error flag, your program will not be loaded into MIX memory correctly. Execution may

well be meaningless.

Reading between the lines of the trace output.

Look at the location of the first instruction traced. Did your program start at the intended address'?

Remember that the registers are normally those before the instruction was executed. For the result of- -
the instruction, look at the next line. If tracing is off and an error occurs, the line before the

error message will contain the registers after the instruction was executed.

If your program does not reach (or does not have) a HLT instruction, it will likely "fall off the end"

of your program into the zeroed memory fran there to location 3999. These zeros are legal NOR

instructions and are traced as a single NOR followed by NEXT INSTRUCTION LOC IS OUT OF BOUNDS (trying

to execute an instruction from location 4000).

If a particular instruction does not do what's intended, look carefully at the assembled instruction on

the assembly listing and at the instruction as traced and at the post-mortem dump, to see if it was

assembled as you intended (and stayed that way). Pay particular attention to the address and F fields.

Remember that a partial-field Compare instruction does not work the same way as the other partial-field

instructions; it uses the same field both in the register and in memory.

To convince yourself' that your program is working correctly, always read the trace output and rethink

what is supposed to be happening. Start out by assuming that your program is incorrect, instead of

assuming that it is all right.

Your program terminates, but you don't know where.

At the top of the dump page, is the LX! printed? If not,the location counter was not in the range 0 -3999

when the program stopped. The J register contains the address of the last branch executed plus one. Say

rJ is 1007; look at the trace or dump and see where the branch at location 1006 went. Verify in the

dump that ,the branch has not been accidentally modified. If this branch went to a legal location, then

you executed fran there to location 3999.

Because of lines or time limit, you got no dump. Look at the last line of the trace. After it was

printed, the following things may have happened: one more instruction was traced, but the printed line

for it is still in a simulator output buffer, not yet on the printer; tracing was suspended because '

every instruction was executed n times (for GO n) ; the program then entered an infinite loop.

This is a very camnon sequence (especially if you forgot to set your job card limits as high as the

ASM limits), so don't use the last line of tracing as evidence that no more instructions were executed.

Infinite input: the MIX/360 system inserts an infinite number of END cards ("END" in columns 12-14) at

the end of a deck. If there is an IN instruction inside an infinite loop, the program will eventually

exceed its time or line limits. To see what is happening, always write your programs to print out their

input data, e.g.

10

IN BUFFER
d JBUS *(16)

OUT BUFFER

L JBUS *(18)
(18)

Implementation Notes

The MIX/360 simulator is written in 360 assembly language and takes about 80-100 microseconds on the

360/67 to interpret a single MIX instruction (with tracing off). This gives an effective speed of about

10,000 MIX instructions per second.

Each MIX memory location is kept as 10 decimal digits (5 bytes), plus sign, flags, and frequency

count (3 more bytes). Decimal hardware of the 360 is used extensively.

The frequency count for each location is 20 bits, for a range of approximately 0 -l,OOO,OOO 0

Simulations running over 100 seconds may overflow this count (also see JBUS below). On the post-mortem

dump the counts are printed modulo 100,000, but are added into the total correctly.

I/O overlap is simulated by (1) doing the actual I/O "instantaneously" at the time the IN or OUT

is interpreted, (2) setting flag bits in the memory locations involved, marking them as "I/O in progress",

(3) maintaining an ordered priority queue of what 'IYME the next I/O operation will have its simulated comple-

tion, and (4) resetting the flag bits when the proper simulated time occurs. A simulated card read or

printer write takes about 7100 tyme units; a page eject, 30,000 tyme units.

An untraced JBUS * is simulated by artificially setting the TYME to the completion tyme of the next -

I/O event, and incrementing the frequency count of the JBUS appropriately. Because of this special

arrangement, a typical JBUS instruction will have its frequency count incremented by about 7000 in the same

time that it takes the simulator to interpret one other instruction. So about 145 executions of a JBUS *

loop will overflow its 220 frequency counter. An overflowed counter is reset modulo 2
20

.

11

